ANALYSIS OF LTPP CONCRETE PAVEMENT SECTIONS: JCP&CRCP

Feng Hong, PhD, PE
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Jointed Concrete Pavement</td>
<td>6-8</td>
</tr>
<tr>
<td>3</td>
<td>Continued Reinforced Concrete Pavement</td>
<td>9-11</td>
</tr>
<tr>
<td>4</td>
<td>Service Life Analysis</td>
<td>12-19</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
<td>20</td>
</tr>
</tbody>
</table>
LONG-TERM PAVEMENT PERFORMANCE (LTPP) PROGRAM

- Initiated in 1980’s, as part of Strategic Highway Research Program (SHRP)
- Currently under the management of Federal Highway Administration (FHWA)
- Objective: assess long-term performance of in-service pavements under various loading and environmental conditions over a period of over 20 years
- The largest comprehensive pavement database across the world
- Over 2,300 test sections across the U.S. and Canada
 - Over 200 sections in Texas
DATA SOURCE

- LTPP standard data release CD or Website
 - http://www.infopave.com
- LTPP concrete pavement sections in this study
 - 54 sections identified
 - 32 JCP: 23(TX) + 7(OK) + 1(LA) + 1(NM)
 - 22 CRCP: 19(TX) + 3 (OK)
- Data collection
 - Condition: distress, ride quality, deflection, etc.
 - Structure: thickness
 - Traffic: AADT, Loading (ESAL)
 - Environment: freeze-index
 - Maintenance: crack sealing, PDR, etc.
Sections 48-3003, built in 1975, still in service in 2007 (>32 years of life)
JOINTED CONCRETE PAVEMENT

- Section 48-3589, built in 1960, out of service in 2000 (40 years of life)
JOINTED CONCRETE PAVEMENT

- Section 48-4143, built in 1970, still in service in 2011 (>41 years of life)
CONTINUOUS REINFORCED CONCRETE PAVEMENT

- Section 48-5328, built in 1975, still in service in 2012 (>37 years of life)
CONTINUOUS REINFORCED CONCRETE PAVEMENT

- Section 48-5274, built in 1973, AC overlaid in 2000 (27 years of life)
Section 48-3779, built in 1978, still in service in 2012 (>34 years of life)
SERVICE LIFE ANALYSIS

- Determination of service life
 - Termination of service
 - Overlaid
 - Out of service per LTPP designation

- Distribution of service life
 - Observed
 - Unobserved

- Survival analysis
 - Duration models
DISTRIBUTION OF SERVICE LIFE: JCP

All Mean > 30.8 y

Mean = 27.6 y
Mean > 31.6 y

Observed
Unobserved
DISTRIBUTION OF SERVICE LIFE: CRCP

All Mean > 29.3 y

Mean = 30.0 y

Mean > 29.0 y

Life (years)
DATA STRUCTURE

- Non-censored vs. Censored data
SURVIVAL ANALYSIS: DURATION MODELS

- Statistical modeling approach to handle the mix of un- and censored data
- Pavement failure/survival as a stochastic process
 - Failure probability
 - Survival probability
- Hazard function
 - Use Weibull distribution to model hazard
 - Incorporate the affecting variables
 - Traffic: annual average k-ESALs
 - Environment: freeze-index
 - Structure: slab thickness
 - Pavement type: JCP vs. CRCP
MODEL ESTIMATION RESULTS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Variables</th>
<th>Mean</th>
<th>Stdev</th>
<th>t-stat*</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0</td>
<td>Constant</td>
<td>3.55</td>
<td>8.11E-01</td>
<td>4.38</td>
</tr>
<tr>
<td>α_1</td>
<td>Avg. Annual ESAL</td>
<td>-5.39E-04</td>
<td>3.27E-04</td>
<td>-1.65</td>
</tr>
<tr>
<td>α_2</td>
<td>Freeze-Index</td>
<td>-8.06E-04</td>
<td>1.79E-03</td>
<td>-0.45</td>
</tr>
<tr>
<td>α_3</td>
<td>Slab-Thickness</td>
<td>5.05-02</td>
<td>9.27E-02</td>
<td>0.55</td>
</tr>
<tr>
<td>α_4</td>
<td>JCP(Y)</td>
<td>-4.89E-02</td>
<td>2.12E-01</td>
<td>-0.23</td>
</tr>
</tbody>
</table>

* The critical value for t-stat is ±1.645 at a 90% confidence level.
SUMMARY

- 4 southern states LTPP concrete pavement sections investigated in this study
- Service life focused
- Statistical analysis conducted
 - In a 20 years service period, survival probability was almost 100%
 - In a 30 years service period, survival probability was approximate 90%
 - In a 40 years service period, survival probability was around 65%
 - Traffic played a significant role in pavement deterioration
 - Freeze-index did not significantly affect life
 - Slab thickness (in a range) did not significantly affect life
 - No significant difference found in lives between JCP and CRCP
- Further study
 - Including more detailed factors, more sections e.g., from PMIS
ACKNOWLEDGEMENT

- Magdy Mikhail, PhD, PE, Texas Department of Transportation
- Hua Chen, PE, Texas Department of Transportation
- Long-Term Pavement Performance Program, Federal Highway Administration
THANK YOU

Contact: Feng.Hong@txdot.gov
SURVIVAL ANALYSIS: PARAMETRIC

- Cumulative density function

\[F(t) = \text{Prob}(T \leq t) = \int_0^t f(s)ds \]

- Survival function

\[S(t) = 1 - F(t) = \text{Prob}(T \geq t) = \int_t^{+\infty} f(s)ds \]

- Hazard function

\[\lambda(t) = \lim_{\Delta t \to 0} \frac{\text{Prob}(t \leq T \leq t + \Delta t)}{\Delta t} = \frac{f(t)}{S(t)} \]

- Use Weibull distribution to model hazard

\[\lambda(t) = \lambda p(\lambda t)^{p-1} \]

- Incorporating covariates

\[\lambda = \exp(-X' \beta) \]

\[= \exp(-(\alpha_0 + \alpha_1 Traffic + \alpha_2 Environment + \alpha_3 Structure + \alpha_4 If _ JCP)) \]
SURVIVAL ANALYSIS: NONPARAMETRIC

- Algorithm: Kaplan-Meier method (product limit formula)

\[
\hat{S}(t_j) = \hat{S}(t_{j-1})P(T > t_j | T \geq t_j) = \prod_{i=1 \text{to } j} \frac{n_i - d_i}{n_i}
\]

Where,

\(\hat{S}(t_j)\) = Survival probability estimate,

\(t_j\) = Ordered failure times,

\(d_i\) = Number of failures, and

\(n_i\) = Number of those exposed to risk
SURVIVAL CURVE: NONPARAMETRIC

[Graph showing survival curve with different durations and survival rates.]