SHRP 2 Renewal
Long Life Composite Pavement Systems

Michael I. Darter and Shree Rao, ARA, Inc.
Lev Khazanovich and Derek Tompkins, University of Minnesota
John Harvey and James Signore, University of California at Davis
Julie Vandebossche, University of Pittsburgh

International Conference Long-Life Concrete Pavements
Seattle, Washington – September 2012

Presentation

• Definition composite pavement
• Composite Long Life Examples
• Developed Products SHRP R-21
• Benefits Long Life Composite Pavements

Two Types Composite Pavements

HMA, Porous HMA, SMA, ARFC / JPCP, CRCP, RCC

PCC/JPCP: Wet on Wet

R21: Composite Pavements and SHRP2 Renewal

Renewal Mission: “Get in, Get out, Stay out”

– Upper layer (HMA or PCC)
 – Primarily a functional layer
 – Can be rapidly renewed (if needed) with minimal disruption to traffic
 • Retexturing (grinding for PCC)
 • Remove and replace surface layer (for HMA)
 – Higher quality materials (aggregate, binder, cement content, etc.) for increased life
 – Very good surface characteristics (smoothness, friction, noise, durability)

– Lower layer (PCC)
 – Primary structural layer
 – Designed for minimal fatigue damage (no fatigue cracking)
 – Produces long-lived structure
 – Can be designed with lower cost materials (recycled materials, aggregates, lower cement content, high cement replacement, limited RAP, etc.)

Presentation

• Definition composite pavement
• Composite Long Life Examples
• Developed Products
• Benefits
Florida US 41 PCC/PCC
- Age: 30-years, 5 million trucks / lane
- 3-in PCC / 9-in PCC (fully bonded)
 - Top layer: Normal strength/texture PCC
 - Lower layer: Lower strength PCC
- 15 & 20-ft joint spacing
- Doweled and non-doweled joints
- Performance: minor cracking & faulting
- Maintenance: minor only

Austria A-1 PCC/PCC
- Age: 14 to 20-years, 47+ million trucks / lane
- 2-in PCC / 8-in RCA w/RAP (fully bonded)
 - Top layer: Higher strength PCC
 - Lower layer: Normal strength PCC
- 18-ft joint spacing
- Doweled joints
- Performance: no cracking or faulting
- Maintenance: minor only
Germany A-93 PCC/PCC

- Age: 13-years, 53 million trucks / lane
- South of Munich, Germany
- 3-in PCC / 7.5-in PCC (fully bonded)
 - Top layer: Higher strength PCC
 - Lower layer: Normal strength PCC
- 16-ft joint spacing
- Doweled joints
- Performance: no cracking or faulting
- Maintenance: minor only

Netherlands N-279 PCC/PCC

- Age: 8-years, 12 million trucks / lane
- 3.5-in PCC / 7-in PCC (fully bonded)
 - Top layer: Higher strength PCC
 - Lower layer: Normal strength PCC
- 15-ft joint spacing
- Doweled joints
- Performance: no cracking or faulting
- Maintenance: minor only

Presentation

- Definition composite pavement
- Composite Long Life Examples
 - Developed Products
 - Benefits
R21: Products – 1. Design

(a) Revisions of the AASHTO MEPDG software program – MEPDG version R21.1.3

- Numerous bugs fixed, modifications to PCC layer thicknesses, PCC layer properties, slab and base interaction properties (full vs. zero friction), PCC/PCC subgrade response modeling, & distribution of temperature nodes representing a thermal gradient through composite pavement system.
- Calibrated structural and performance models for key distresses in composite pavements.
- Recommended design inputs.

Calibration Results HMA/JPCP (Transverse Fatigue Cracking)

Can design HMA/JPCP using DARWin-ME

(b) Revisions to the Manual of Practice (MOP)

- List of revisions (how to design composite, inputs)
- Where the revisions should be inserted into the MOP
- MOP revisions include composite pavement design examples

(c) Life-Cycle Cost Analysis (LCCA) guidelines and examples

- Guidelines for performing LCCA to compare composite and conventional pavements (Mn contractor analysis)
- Guidelines using FHWA RealCost and examples

PCC/PCC Composite Pavements and Costs

- MnROAD Contractor’s Assessment
- Implementation of a 2-layer Composite Paving process would be a viable and competitive alternative to Conventional Paving, if:
 - Class A aggregates aren’t readily available.
 - High haul times drive the price of the aggregates too high.
 - Recycled Concrete could be produced on or near the site.
 - Haul times would have to be cut to minimal levels.
 - Should have to produce recycled at about 60% the cost of Class A.
 - You were capable of producing and paving at an equal rate to conventional paving (using two pavers).
- Lower life-cycle costs
 - Rapid renewal, lower maintenance and rehabilitation, long-life
R21: Products – 2. Construction and Materials

(a) Construction Specifications (Specs.)

- Material specs. – cementitious (cement, flyash), asphalt binder, aggregate type and gradation, etc.
- Procedural specs. – two-lift wet-on-wet construction, timing, texturing, saw-cutting & sealing, tack coat application (HMA/PCC), etc.

(b) Construction Guidelines and Quality Management (QM) Procedures

- Two-lift wet-on-wet construction timing and sequencing, surface brushing & texturing procedures and guidelines, paving low-slump stiff concrete, paving thin upper lift, recycling existing pavement, and other operational issues

(c) Material Guidelines

- Material selection guidelines for cementitious materials (cement, flyash), asphalt binder, aggregate type and gradation (considering durability issues for both lower lift and upper lift), using recycled aggregates, retarding/curing compound.
- PCC RILEM 176 CIF freeze/thaw testing

R21: Products – Final Report

- Vol. A: HMA/PCC Composite Pavement
- Vol. B: PCC/PCC Composite Pavement
- Vol. C: Appendices A through W: Background composite pavements; US/Canada/European survey results; European field summary; distress mechanisms, construction MnRoad & UCPRC, instrumentation, rutting, slab temperatures, HMA cracking, joint movement, HMA & PCC lab tests, HMA bonding & friction, CALME, MEPDG modifications, Lattice 3D model, recycled PCC, new freeze-thaw PCC testing, brushing exposed aggregate concrete
- Vol. D: Appendix X (Specifications) & Y (revisions AASHTO Manual Practice)

R21: Products – Other

(a) MnROAD Test Sections

- Three full-length two-lane test sections constructed at MnROAD in Albertville, MN on Interstate 94
- Construction in April/June 2010, open to traffic in July
- Currently being monitored (instrumentation, field surveys, other field testing)
R21: Products – 5. Other

(b) UCPRC HVS Test Sections

- 12 45-ft 1-lane wide test sections
- Currently being monitored (instrumentation) and tested with the HVS
- Channelized half-axle dual-wheel loading – rutting, reflection cracking, PCC fatigue cracking

PCC/PCC Composite Pavements and Performance

<table>
<thead>
<tr>
<th>Distress Type</th>
<th>Conventional JPCP & CRCP</th>
<th>Composite PCC/JPC & PCC/CRC Pavement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom-Up Slab Fatigue Cracking</td>
<td>Yes, major design concern.</td>
<td>Yes, major design concern.</td>
</tr>
<tr>
<td>Top-Down Slab Fatigue Cracking and Top-Down Fatigue Cracking and Corner Breaks</td>
<td>Yes, major design concern.</td>
<td>Yes, has occurred on some projects. No, was not observed on any PCC/PCC composite project. Higher strength PCC surface layer may be beneficial.</td>
</tr>
</tbody>
</table>

R21: Products – 5. Other

(d) Lattice Model (PCC/PCC Debonding)

- Completed work coupled the lattice models with finite element models to provide a comprehensive model of the PCC/PCC interface bonding.
- Analysis concluded wet on wet paving had only very low chance if any to debond, matching field surveys & bond testing.

PCC/JPCP Composite Design
Versus Single Slab
I-94 Albertville, Minnesota (10 M trucks)

<table>
<thead>
<tr>
<th>Design</th>
<th>PCC/PCC Composite</th>
<th>JPCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC Surface</td>
<td>3-in PCC</td>
<td>None</td>
</tr>
<tr>
<td>JPCP</td>
<td>H = 6 in RCA Dowels = 1.25 in</td>
<td>H = 8.75 in PCC Dowels = 1.25 in</td>
</tr>
<tr>
<td>Base</td>
<td>8-in Untreated Aggregate</td>
<td>8-in Untreated Aggregate</td>
</tr>
<tr>
<td>Reliability</td>
<td>>90%</td>
<td>>90%</td>
</tr>
</tbody>
</table>

PCC/JPCP Composite Design
Versus Single Slab
I-70, Abilene, Kansas (21 M trucks)

<table>
<thead>
<tr>
<th>Design</th>
<th>PCC/PCC Composite</th>
<th>JPCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>1.5-in PCC</td>
<td>None</td>
</tr>
<tr>
<td>JPCP</td>
<td>H = 11.8 in Dowels = 1.5 in</td>
<td>H = 13 in Dowels = 1.5 in</td>
</tr>
<tr>
<td>Base</td>
<td>8-in Untreated Aggregate</td>
<td>8-in Untreated Aggregate</td>
</tr>
<tr>
<td>Reliability</td>
<td>>90%</td>
<td>>90%</td>
</tr>
</tbody>
</table>
Long Life Composite Pavement Benefits

<table>
<thead>
<tr>
<th>Benefit</th>
<th>PCC / PCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get in / Get out</td>
<td>Long life surface, but PCC top surface can be restertextured rapidly</td>
</tr>
<tr>
<td>Long fatigue life</td>
<td>Top & Bottom PCC layer designed for low structural fatigue damage & cracking</td>
</tr>
<tr>
<td>Life cycle cost</td>
<td>Equivalent or less than conventional HMA or PCC, but very cost-effective where quality aggregates are scarce</td>
</tr>
<tr>
<td>Reflection cracking</td>
<td>Does not exist</td>
</tr>
<tr>
<td>Scarcely costly aggregate</td>
<td>Lower cost aggregate used in lower thicker PCC layer</td>
</tr>
<tr>
<td>Surface characteristics advantage</td>
<td>Hard high quality aggregate. Diamond grinding & EAC provides low noise, high friction, smoothness, low polish, thus longer life</td>
</tr>
</tbody>
</table>